Telegram Group & Telegram Channel
Конкретный автоэнкодер [2019] и его улучшение [2024]

Итак, обычно в автоэнкодерах мы решаем задачу сжатия изначального вектора фичей в пространство маленькой размерности. Мы обучаем энкодер q(z|x) и декодер p(x|z) таким образом, чтобы у нас получалось восстановить изначальный вектор x из вектора скрытых переменных z.

Конкретный автоэнкодер ставит задачу более интересным образом - вместо перевода вектора фичей в скрытое пространство мы хотим выбрать список фичей в x, который и будет этим самым вектором скрытых переменных.

Иначе говоря, какие фичи содержат наибольшее количество информации, которое позволит восстановить исходный вектор x наилучшим образом? Конкретный автоэнкодер решает именно эту задачу.

Слово "конкретный" в названии - "concrete" - на самом деле сокращение от Continuous Discrete - это параллельное изобретение того самого Gumbel Softmax трюка, который я описывал в позапрошлом посте.

Единственным параметром энкодера является матрица KxN - размерность скрытого вектора на кол-во фичей. В каждой строке у нас находится обучаемый вектор "логитов" для каждой фичи, к которому мы применяем Gumbel Softmax и получаем soft one-hot вектор-маску для всех фичей, которую затем скалярно умножаем на исходный вектор фичей - получая таким образом дифференцируемую аппроксимацию выбора одной фичи из всего списка.

Делая это независимо K раз, мы выбираем K фичей, которые и становятся выходом энкодера. В базовой статье про конкретный автоэнкодер иллюстрация на MNIST демонстрируют способность такой схемы обучиться игнорировать пиксели по краям и при этом задействовать по 1 пикселю из всех остальных частей картинки, никогда не беря соседние. Эксперименты на других датасетах там тоже есть.

Indirectly Parameterized CAE - улучшение данного подхода. Я с CAE не развлекался, но утверждается, что у базовой модели есть проблемы со стабильностью обучения, а также она почему-то всё же дублирует фичи по несколько раз, что, вроде как, тоже связано с этой нестабильностью.

Один простой трюк очень сильно улучшает ситуацию. Вместо обучаемой матрицы KxN используется Indirect Parameterization - эта матрица вычисляется как функция от 3 обучаемых штук: умножения матрицы KxN на матрицу NxN и прибавления вектора размера N к каждой строке результата.

Честно говоря, в статье не хватает нормальной мотивации и интуиции, но, судя по результатам, у них это обучается гораздо лучше бейзлайна и всегда выдаёт уникальные фичи.

Главный вопрос - а нахрена вообще всё это нужно?

Внезапно эта идея имеет отличное практическое применение в нейросетях, а именно для проведения Feature Selection! В ситуации, когда обучать сеть супердорого и вы можете позволить это делать единичное число раз, а фичей у вас тысячи, использование Конкретного Энкодера в самом начале модели позволяет обучить Selection K фичей из N напрямую. При этом, если качество модели совпадает с качеством изначальной модели, можно смело выкидывать из прода целых N-K фичей.

Коллеги рапортуют о том, что у нас это заработало, так что, с чистой совестью делюсь хаком.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/267
Create:
Last Update:

Конкретный автоэнкодер [2019] и его улучшение [2024]

Итак, обычно в автоэнкодерах мы решаем задачу сжатия изначального вектора фичей в пространство маленькой размерности. Мы обучаем энкодер q(z|x) и декодер p(x|z) таким образом, чтобы у нас получалось восстановить изначальный вектор x из вектора скрытых переменных z.

Конкретный автоэнкодер ставит задачу более интересным образом - вместо перевода вектора фичей в скрытое пространство мы хотим выбрать список фичей в x, который и будет этим самым вектором скрытых переменных.

Иначе говоря, какие фичи содержат наибольшее количество информации, которое позволит восстановить исходный вектор x наилучшим образом? Конкретный автоэнкодер решает именно эту задачу.

Слово "конкретный" в названии - "concrete" - на самом деле сокращение от Continuous Discrete - это параллельное изобретение того самого Gumbel Softmax трюка, который я описывал в позапрошлом посте.

Единственным параметром энкодера является матрица KxN - размерность скрытого вектора на кол-во фичей. В каждой строке у нас находится обучаемый вектор "логитов" для каждой фичи, к которому мы применяем Gumbel Softmax и получаем soft one-hot вектор-маску для всех фичей, которую затем скалярно умножаем на исходный вектор фичей - получая таким образом дифференцируемую аппроксимацию выбора одной фичи из всего списка.

Делая это независимо K раз, мы выбираем K фичей, которые и становятся выходом энкодера. В базовой статье про конкретный автоэнкодер иллюстрация на MNIST демонстрируют способность такой схемы обучиться игнорировать пиксели по краям и при этом задействовать по 1 пикселю из всех остальных частей картинки, никогда не беря соседние. Эксперименты на других датасетах там тоже есть.

Indirectly Parameterized CAE - улучшение данного подхода. Я с CAE не развлекался, но утверждается, что у базовой модели есть проблемы со стабильностью обучения, а также она почему-то всё же дублирует фичи по несколько раз, что, вроде как, тоже связано с этой нестабильностью.

Один простой трюк очень сильно улучшает ситуацию. Вместо обучаемой матрицы KxN используется Indirect Parameterization - эта матрица вычисляется как функция от 3 обучаемых штук: умножения матрицы KxN на матрицу NxN и прибавления вектора размера N к каждой строке результата.

Честно говоря, в статье не хватает нормальной мотивации и интуиции, но, судя по результатам, у них это обучается гораздо лучше бейзлайна и всегда выдаёт уникальные фичи.

Главный вопрос - а нахрена вообще всё это нужно?

Внезапно эта идея имеет отличное практическое применение в нейросетях, а именно для проведения Feature Selection! В ситуации, когда обучать сеть супердорого и вы можете позволить это делать единичное число раз, а фичей у вас тысячи, использование Конкретного Энкодера в самом начале модели позволяет обучить Selection K фичей из N напрямую. При этом, если качество модели совпадает с качеством изначальной модели, можно смело выкидывать из прода целых N-K фичей.

Коллеги рапортуют о том, что у нас это заработало, так что, с чистой совестью делюсь хаком.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/267

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

What is Telegram?

Telegram is a cloud-based instant messaging service that has been making rounds as a popular option for those who wish to keep their messages secure. Telegram boasts a collection of different features, but it’s best known for its ability to secure messages and media by encrypting them during transit; this prevents third-parties from snooping on messages easily. Let’s take a look at what Telegram can do and why you might want to use it.

Knowledge Accumulator from br


Telegram Knowledge Accumulator
FROM USA